The angle at $\mathrm{O}, 107.5(2)^{\circ}$, is markedly smaller than that in $\left(\mathrm{Ph}_{3} \mathrm{C}\right)_{2} \mathrm{O}, 127.9(1)^{\circ}$, which was ascribed to repulsive interactions between the two $\mathrm{Ph}_{3} \mathrm{C}$ groups (Glidewell \& Liles, 1978). A similar substantial reduction in interbond angle at O has been observed on going from $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2}$ (Csákvári, Wagner, Gömöry, Mijlhoff, Rozsondai \& Hargittai, 1976) to $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{O}_{2}$ (Käss, Oberhammer, Brandes \& Blaschette, 1977): in this case also the wider angle in the oxo compound can be ascribed to steric factors.

The angle between the two COO planes is 180°; such a large dihedral angle occurs only rarely in peroxo compounds. In the simplest peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, the dihedral angle in the solid state is $90.2(6)^{\circ}$ (Busing \& Levy, 1965), but the barrier to rotation about the O-O bond is very small, being $4.62 \mathrm{~kJ} \mathrm{~mol}^{-1}$ towards the trans conformation and $29.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ towards the cis (Hunt, Leacock, Peters \& Hecht, 1965). However, marked deviations from a dihedral angle of ca 90° usually occur only as a consequence of either hydrogen bonding or steric repulsion (Table 4), although the value of 180° in $M_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\left(M=\mathrm{NH}_{4}\right.$ or Cs) (Zachariasen \& Mooney, 1934) has no obvious interpretation.

We thank the SRC for support.

References

Belitskus, D. \& Jeffrey, G. A. (1965). Acta Cryst. 18, 458-463.
Busing, W. R. \& Levy, H. A. (1965). J. Chem. Phys. 42, 3054-3059.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Csákvárı, B., Wagner, Z., Gömöry, P., Mijlhoff, F. C., Rozsondal, B. \& Hargittal, I. (1976). J. Organomet. Chem. 107, 287-294.
Glidewell, C. \& Liles, D. C. (1978). Acta Cryst. B34, 696-698.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Harvey, R. B. \& Bauer, S. H. (1954). J. Am. Chem. Soc. 76, 859-864.
Hunt, R. H., Leacock, R. A., Peters, C. W. \& Hecht, K. T. (1965). J. Chem. Phys. 42, 1931-1946.

Jackson, R. H. (1962). J. Chem. Soc. pp. 4585-4592.
Käss, D., Oberhammer, H., Brandes, D. \& Blaschette, A. (1977). J. Mol. Struct. 40, 65-75.

Kimura, K. \& Kubo, M. (1959). J. Chem. Phys. 30, 151158.

Marsden, C. J., Bartell, L. S. \& Diodati, F. D. (1977). J. Mol. Struct. 39, 253-262.
Marsden, C. J., Desmarteau, D. D. \& Bartell, L. S. (1977). Inorg. Chem. 16, 2359-2366.

Riche, C. \& Pascard-Billy, C. (1974). Acta Cryst. B30, 1874-1876.
Robbins, A., Jeffrey, G. A., Chesick, J. P., Donohue, J., Cotton, F. A., Frenz, B. A. \& Murillo, C. A. (1975). Acta Cryst. B31, 2395-2399.
Sax, M., Beurskens, P. \& Chu, S. (1965). Acta Cryst. 18, 252-258.
Sax, M. \& McMullen, R. K. (1967). Acta Cryst. 22, 281288.

Shaeffer, W. P. (1968). Inorg. Chem. 7, 725-731.
Sheldrick, G. M. (1978). Unpublished.
Zachariasen, W. H. \& Mooney, R. C. L. (1934). Z. Kristallogr. 88, 63-81.

Acta Cryst. (1979). B35, 502-504

The meso Condensation Dimer from 2-(3-Bromopropyl)-6-hydroxy-2-methyl-1-indanone

By Peter Murray-Rust and Judith Murray-Rust
Department of Chemistry, University of Stirling, Stirling FK 9 4LA, Scotland

(Received 17 October 1978; accepted 6 November 1978)

Abstract

C}_{26} \mathrm{H}_{28} \mathrm{O}_{4}, M_{r}=404 \cdot 5\), triclinic, $P \overline{1}, a=$ 6.04 (1), $b=8.73$ (2), $c=10.65$ (4) $\AA, 九=99.90$ (3), $\beta=95 \cdot 28$ (3), $\gamma=69.33$ (3) ${ }^{\circ}$ from diffractometer measurements (Mo $K \bar{\pi}$ radiation). $V=516 \AA^{3}, Z=1$, $D_{c}=1.296 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=216, \mu=0.049 \mathrm{~mm}^{-1}$. The molecule was shown to be the meso isomer.

Introduction. The title compound was recrystallized from chloroform.

Weissenberg and precession photographs indicated a triclinic space group. Data were collected for $0-6 \mathrm{kl}$

0567-7408/79/020502-03\$01.00
with $\theta_{\max }=27.5^{\circ}$ on a Stoe STADI-2 diffractometer (graphite-monochromated Mo $K_{\bar{\pi}}$ radiation). This gave 2175 data of which 1843 unique reflexions with $I>$ $3 \sigma(I)$ were used in subsequent calculations. Lorentz and polarization corrections (but none for extinction or absorption) were applied, and the data were scaled by a Wilson plot. The structure was solved by direct methods with SHELX 76 (Sheldrick, 1976), which was used for all calculations. Complex neutral-atom scattering factors were taken from International Tables for X ray Crystallography (1974). Weighted full-matrix least© 1979 International Union of Crystallography

Table 1. Fractional atomic coordinates $\times 10^{4}$ with e.s.d.'s in parentheses

	x	y	z
C(1)	3546 (2)	7456 (1)	9389 (1)
C(2)	1387 (2)	7580 (2)	8718 (1)
C(3)	1218 (2)	6404 (2)	7711 (1)
C(4)	3229 (2)	5044 (2)	7348 (1)
C(5)	3476 (2)	3536 (2)	6356 (1)
C(6)	6114 (2)	2431 (2)	6450 (1)
C(7)	7188 (2)	3392 (1)	7538 (1)
C(8)	5343 (2)	4966 (1)	8006 (1)
C(9)	5574 (2)	6153 (2)	9013 (1)
C(10)	6614 (2)	651 (2)	6716 (1)
C(11)	4965 (2)	356 (2)	7584 (1)
C(12)	4406 (2)	1502 (2)	8836 (1)
C(13)	7411 (3)	2337 (2)	5250 (1)
$\mathrm{O}(1)$	6556 (1)	1340 (1)	9586 (1)
O(2)	9237 (1)	2925 (1)	7917 (1)
H(1)	50 (24)	8524 (17)	9022 (14)
H(2)	-298 (25)	6485 (19)	7270 (14)
H(3)	2335 (27)	2966 (18)	6548 (15)
H(4)	3087 (24)	3837 (19)	5453 (14)
H(5)	7056 (22)	6039 (16)	9429 (13)
H(6)	8284 (24)	278 (17)	7031 (13)
H(7)	6616 (24)	-73 (18)	5891 (14)
H(8)	3445 (23)	431 (17)	7125 (13)
H(9)	5644 (26)	-789 (19)	7770 (14)
H(10)	3359 (22)	1212 (16)	9320 (13)
H(11)	3735 (21)	2655 (16)	8696 (12)
H(12)	6715 (28)	1840 (21)	4509 (16)
H(13)	9098 (29)	1659 (21)	5336 (17)
H(14)	7222 (29)	3479 (21)	5092 (16)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.4$	1.408 (2)	$\mathrm{C}(6)-\mathrm{C}(10) \quad 1.546$	1.546 (2)
$\mathrm{C}(1)-\mathrm{C}(9) \quad 1.3$	1.381 (1)	$\mathrm{C}(6)-\mathrm{C}(13) \quad 1.53$	1.535 (2)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.3$	1.374 (2)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.472$	1.472 (1)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.3$	1.396 (2)	$\mathrm{C}(7)-\mathrm{O}(2) \quad 1.21$	1.214 (1)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.5$	1.511 (2)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.39$	1.392 (2)
$\mathrm{C}(4)-\mathrm{C}(8) \quad 1.3$	1.386 (2)	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.532$	1.532 (2)
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.5$	1.551 (2)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.50$	1.509 (2)
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.5$	1.543 (2)	$\mathrm{C}(12)-\mathrm{O}(1) \quad 1.43$	1.437 (1)
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$	119.8 (1)	$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(10)$	108.6 (1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.7 (1)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	108.9 (1)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.4 (1)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	124.9 (1)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	129.7 (1)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	126.2 (1)
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(3)$	117.9 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(4)$	109.2 (1)
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)$	112.3 (1)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(4)$	123.9 (1)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	105.1 (1)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	126.7 (1)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	104.4 (1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)$	117.2 (1)
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(5)$	$116 \cdot 3$ (1)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(6)$	118.7 (1)
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	110.3 (1)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	116.7 (1)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(5)$	111.2 (1)	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	109.4 (1)
C(13)-C(6)-C(7)	105.5 (1)		

squares refinement (including isotropic H atoms) converged at $R=0.040$ for 1843 observed reflexions $\left(R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| \sum\left|F_{o}\right|\right) ; R_{w}=0.047\left\{R_{w}=\right.$ $\sum\left(\left|F_{o}\right|-\left|F_{c}\right| \mid w^{1 / 2}\right) / \sum\left(\mid F_{o}{ }^{o} w^{1 / 2}\right), w=5.025 /\left[\sigma^{2}\left(F_{o}\right)\right.$ $\left.\left.+0.000316 F_{o}^{2}\right\}\right\}$. In the final cycle all shifts in parameters were less than their e.s.d.'s. Positional parameters
are given in Table 1, bond distances and angles in Table 2.*

Discussion. In the attempted synthesis of aconane alkaloids by cyclization of (I) (Chatterjee, Misra, Mukherjee \& Dutta, 1975) an unexpected product was obtained, which was assigned structure (IIa) on the basis of NMR, mass spectral and analytical data. On treatment of this substance with Zn dust and subsequent work-up a second substance was obtained which had essentially identical spectral and analytical data but nevertheless was a different compound as shown by TLC (Chatterjee \& Watt, 1976). Both substances were recrystallized and shown to be pure by TLC, and structure analyses of both were undertaken.

(I)

(II) (a) Indeterminate stereochemistry.
(b) R, S centrosymmetric meso isomer.

[^0]

Fig. 1. General view of the molecule.

Table 3. Torsion angles $\left({ }^{\circ}\right)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(12^{\prime}\right)$	$176 \cdot 0$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}\left(12^{\prime}\right)$	$-2 \cdot 4$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}(12)-\mathrm{C}(11)$	$165 \cdot 5$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$-61 \cdot 0$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(6)$	$-48 \cdot 3$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(5)$	-34.9
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	$83 \cdot 6$

The compound described in this paper was isolated from the reaction mixture after dimerization of (I). It is shown to be (IIb), i.e. the meso isomer, where the two quaternary C atoms have opposite chiralities. The conformation is centrosymmetric, and similar to ansa molecules since the anisolic group $\mathrm{O}(1)-\mathrm{C}(12)$ is essentially planar with the benzene ring (Fig. 1). The
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$ torsion angle (Table 3) is nearly trans, so that the ansa bridging is effectively a three-carbon system $C(6)-C(10)-C(11)$.

We thank Dr S. Chatterjee for crystals, and Dr C. I. F. Watt for helpful discussions.

References

Chatterjee, S., Misra, C., Mukherjee, D. \& Dutta, P. C. (1975). Indian J. Chem. 13, 405-406.

Chatterjee, S. \& Watt, C. I. F. (1976). Unpublished work.
International Tables for X-ray Crystallography (1974). Vol. IV. p. 99. Birmingham: Kynoch Press.

Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1979). B35, 504-506

The Racemic Condensation Dimer from

2-(3-Bromopropyl)-6-hydroxy-2-methyl-1-indanone

By Peter Murray-Rust and Judith Murray-Rust
Department of Chemistry, University of Stirling, Stirling FK9 4LA, Scotland

(Received 17 October 1978; accepted 6 November 1978)

Abstract

C}_{26} \mathrm{H}_{28} \mathrm{O}_{4}, M_{r}=404 \cdot 5\), monoclinic, $P 2_{1} / c$, $a=7.93$ (2), $b=19.47$ (6), $c=13.98$ (5) $\AA, \beta=$ $101.55(3)^{\circ}$ from diffractometer measurements (Mo $K \bar{\alpha}$ radiation). $V=2115 \AA^{3}, Z=4, D_{c}=1.279 \mathrm{Mg}$ $\mathrm{m}^{-3}, F(000)=864, \mu=0.048 \mathrm{~mm}^{-1}$. The substance was shown to be the racemic diastereoisomer.

Introduction. Systematic absences (from precession photographs) $h 0 l, l$ odd and $0 k 0, k$ odd indicated space group $P 2_{1} / c$. Data were collected for $0-6 k l$ with $\theta_{\max }=$ 22.5° on a Stoe STADI-2 diffractometer (graphitemonochromated Mo $K \bar{a}$ radiation). This gave 2425 data of which 1493 unique reflexions with $I>3 \sigma(I)$ were used in subsequent calculations. Lorentz and polarization corrections (but none for extinction or absorption) were applied, and the data were scaled by a Wilson plot. The structure was solved by direct methods with SHELX 76 (Sheldrick, 1976), which was used for all calculations. Complex neutral-atom scattering factors were taken from International Tables for X ray Crystallography (1974). Weighted full-matrix leastsquares refinement (including isotropic H atoms) converged at $R=0.048$ for 1493 observed reflexions $\left(R=\sum\left|F_{o}\right|-\left|F_{c}\right| / \sum\left|F_{o}\right|\right) ; R_{w}=0.044\left\{R_{w}=\right.$ $\sum\left(\left|\left|F_{o}\right|-\left|F_{c}\right| w^{1 / 2}\right) / \sum\left(\left|F_{o}\right| w^{1 / 2}\right), w=3.7157 /\left[\sigma^{2}\left(F_{o}\right)\right.\right.$ $\left.\left.+0.0002 F_{n}^{2}\right]\right\}$. In the final cycle all shifts in parameters

0567-7408/79/020504-03\$01.00
were less than their e.s.d.'s. Positional parameters are given in Table 1, bond distances and angles in Table 2.*

[^1]

Fig. 1. General view of the molecule.
(c) 1979 International Union of Crystallography

[^0]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34041 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

[^1]: * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34042 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

